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Fourier frames (Duffin and Schaeffer, 1952)
We say a finite Borel measure µ on Rd admits a Fourier frame if
there exists a discrete set Λ ⊂ Rd and 0 < A ≤ B <∞ such that

A||f ||2L2(µ) ≤
∑
λ∈Λ

|f̂ dµ(λ)|2 ≤ B||f ||2L2(µ), ∀ f ∈ L2(µ).

In this case Λ is called a frame spectrum of µ. It is called “tight” if
A = B . It gives an orthonormal basis of exponentials if A = B = 1.

If µ admits a Fourier frame, so does µ|E , ∀E ⊂ Rd . Consequently the
Lebesgue measure on any bounded domain admits Fourier frames.

Fourier frame is a powerful tool in applied harmonic analysis. Each
f ∈ L2(µ) has a Fourier expansion

∑
aλe

2πiλ·x (may not be unique).

Nitzan, Olevskii, Ulanovskii, 2016: any Ω ⊂ Rd (not necessarily
bounded), |Ω| <∞, admits a Fourier frame (with µ = χΩdx).

We say an object admits Fourier frames if its natural measure does.
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Fourier frames on singular measures

Jorgensen, Pedersen, 1998: the one-forth Cantor set in [0, 1] admits
orthonormal basis of exponentials, while the one-third does not.

Strichartz, 2000: does the one-third Cantor set admit Fourier frames?

Lai, Wang, 2017: there exists singular measures with Fourier frames
but no orthonomal basis of exponentials.

Lev, 2018: if both µ on Rm and ν on Rn admit Fourier frames, then
µ× δ0 + δ0 × ν on Rm+n admits Fourier frames.

Lev, 2018: a cap C ⋐ Sd−1
+ (surface measure) admits Fourier frames:∫

C

e−2πix ·(λ,0)f (x)dσ(x) =

∫
π(C)⊂Rd−1

e2πix
′·λ π∗f (x

′)√
1− |x ′|2

dx ′,

so, if 1− |x ′|2 ≈ 1 on π(C ), then Λ× {0} is a frame spectrum for
C ⊂ Sd−1

+ whenever Λ is a frame spectrum for π(C ) ⊂ Rd−1.
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Measures without Fourier frames

Pure type criterion (He, Lau, Lai, 2013): a measure is frame spectral
only it is discrete, absolutely continuous, or singular continuous.

Uniformity criterion (Dutkay, Lai, 2014): Consequences include that
dµ(x + τ) + ψ(x)dµ(x) admits no Fourier frame if ess inf

x∼µ
ψ(x) = 0.

Example: unevenly distributed self-similar measures on Cantor sets.

Fu, Lai, 2018: some ν ∗ (λ+ δt) e.g. µ4+µ16, are not frame-spectral.

Lev, 2018: union of a line segment and a spherical cap, when d ≥ 3.

A question of Lev: what about the whole sphere (surface measure)?

Iosevich, Lai, B.L., Wyman, 2022: NO! The same holds on the C∞

boundary of any convex body with non-vanishing Gaussian curvature.

Kolountzakis, Lai, 2025+: examples without tight frames (A=B).
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Fourier frames on surfaces of nonvanishing

Gaussian curvature

Recall a small spherical cap C ⋐ Sd−1
+ admits Fourier frames, while

the whole sphere Sd−1 does not. What is the threshold? Sd−1
+ ?

Kolountzakis, Lai, 2025+, Question 2: Is S1
+ spectral?

Chen, B.L., 2025+: Sd−1
+ does not admit any Fourier frame. More

generally it holds on half of the boundary of any centrally symmetric
convex body of nonvanishing Gaussian curvature.

Chen, B.L., 2025+: generalize Iosevich-Lai-B.L.-Wyman (2022) to
self-intersecting surfaces. In particular for planar curves we improve a
result of Kolountzakis and Lai (2025+) from tight frames to frames.
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Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E .

A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets:

convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951);

nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),

still the only way to construct deterministic Salem sets in R.
Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier dimension and Salem measures

Definition: dimF E := sup{t : ∃µ ∈ M(E ), s.t. |µ̂(ξ)| ≲ |ξ|−t/2}.

It is known that dimF E ≤ dimH E . A set E is called Salem if
dimF E = dimH E . A measure µ is called Salem if

|µ̂(ξ)| ≤ Cϵ|ξ|−
dimH(suppµ)

2
+ϵ.

The sphere is Salem, while one-third Cantor set is not (dimF = 0).

In R, there are several ways to construct Salem sets and measures:

Random Cantor sets: convolution µ = ν1 ∗ ν2 ∗ · · · with νi
discrete (Salem, 1951); nonconvolution (Bluhm, 1996, etc.).

Random images: Brownian motions (Kahane, 1966), etc.

Diophantine approximations: Kaufman-type construction (1981),
still the only way to construct deterministic Salem sets in R.

Rd , d ≥ 2: surfaces, random images and Diophantine approximations.



Fourier frames on Salem measures

The surface measure on the whole sphere was the only Salem measure
known not admitting Fourier frames.

Any such example in R?

Also motivated by our work on analogs of Kakeya-type problems in R.

Li, B.L., 2025+: for every 0 < s ≤ 1 there exist s-dimensional Salem
measures on the unit interval that do not admit any Fourier frame.

The statement itself is easy to prove: take µ as an arbitrary Salem
measure on [0, 1], ψ ∈ C∞(R) with inf

suppµ
|ψ| = 0, and |τ | > 1, then

dµ(x + τ) + ψ(x)dµ(x)

is Salem with no Fourier frames (uniformity criterion, Dutkay-Lai).

In fact we prove a lot more, that is, such examples are “generic”.
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Nonexistence examples are “generic”

Li, B.L., 2025+: for every 0 < s ≤ 1, and every existing type of
Salem measure in the literature, there exist s-dimensional Salem
measures on the unit interval that do not admit any Fourier frame.

Recall types of Salem measures: random Cantor sets (convolutions,
non-convolutions), random images, Diophantine approximations.

Cantor sets as convolutions: perturb Salem’s 1951 construction
µ = ν1 ∗ ν2 ∗ · · · to make each νi unevenly distributed and µ still a
Salem measure, then apply the uniformity criterion of Dutkay-Lai.

No other Salem measure is convolution or uniformity criterion applies.

Every Salem measure is of pure type, so He-Lau-Lai does not apply.

We need a new criterion, especially on measures with Fourier decay.
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A new criterion on measures with Fourier decay

Suppose Λ is a frame spectrum of µ.

Iosevich, Lai, B.L., Wyman, 2022: If |µ̂(ξ)| ≲ |ξ|−t/2, then∑
λ∈Λ\{0}

|λ|−t = ∞.

Shi’s argument (2021): if supx µ(B(x , r)) ≥ Cr s , ∀r ∈ (0, 1), then

#(Λ ∩ B(0,R)) ≤ C ′R s , ∀R > 0.

Contradiction if t > s! But does such a measure exist? Usually we
work with Frostman measures µ(B(x , r)) ≲ϵ r

dimH(suppµ)−ϵ, while
dimF ≤ dimH.
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Heavy intervals in random Cantor sets

Li, B.L., 2024+: there exist s-dimensional Salem measures on
Diophantine approximation such that for a rapidly increasing qn,

sup
x
µ(B(x , q−1

i )) ≥ Cϵq
−s/2−ϵ
i , i = 1, 2, . . .

Though not strong enough, it encourages us to explore further.

Li, B.L., 2025+: We modify a construction of Chen, 2016 (inspired
by Laba-Praminik, 2009) to construct s-dimensional Salem measures
on non-convolution Cantor sets with µ(B(x0, r)) ≥ Cr s/2 for some x0.

s/2 is optimal: |µ̂(ξ)| ≲ |ξ|− s
2 =⇒ µ(B(x , r)) ≲ r

s
2 (Mitsis, 2002).
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Heavy intervals in Brownian images

Let ω(t) denote the standard Brownian motion on R, ω(0) = 0.

Theorem (Kahane, 1966)

Suppose s > 0 and µ is a Borel measure on [0, 1] with

µ(B(x , r)) ≲ r s , ∀r > 0.

Then the push-forward measure ω∗µ, or denoted by µω, satisfies

|µ̂ω(ξ)| ≤ C (ω, s)|ξ|−s log |ξ|, a.s.

Consequently, if s ∈ (0, 1
2
] and µ(B(x , r)) ≲ r s with dimH suppµ = s

(Frostman measure), then µω is a 2s-dimensional Salem measure a.s.
(It is known that ω(t) is α-Hölder continuous for every 0 < α < 1

2
).

Because of µ(B(x , r)) ≲ r s , it is hard for µω to have heavy intervals!
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Suppose s > 0 and µ is a Borel measure on [0, 1] satisfying

µ([0, r ]) ≲ r s/2, ∀r > 0, and

µ([x , x + r ]) ≲ min{1, x−s/2r s}, ∀x ∈ suppµ\{0}, ∀r > 0.

Then
|µ̂ω(ξ)| ≤ C (ω, s)|ξ|−s log |ξ|, a.s.

We also construct such measures with dimH suppµ = s ∈ (0, 1
2
] and

µ([0, r ]) ≈ r s/2.

By the Hölder continuity, µω is a 2s-dimensional Salem measure with
µω([0, r ]) ≳ω,α r

s
2α , a.s., α ∈ (0, 1

2
). No Fourier frame almost surely!
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Diophantine approximation

Kaufman, 1981: Let qi be a rapidly increasing sequence, then⋂
i

⋃
H∈{1,2...,[qs/2i ]}

Nq−1
i

(
Z
H

)
∩ [−1

2
,
1

2
] (1)

is an s-dimensional Salem set, given s ∈ (0, 1].

Li, B.L. 2024+: there exist s-dimensional Salem measures on (1) with

µ(B(x0, q
−1
i )) ≥ Cϵq

−s/2−ϵ
i , i = 1, 2, . . . , for some x0.

The fast increase of qi is necessary, seems no way to make it ∀r > 0!

We are running out of criteria...
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Diophantine approximation

The key in the proof on the whole sphere is the surface measure

σ̂(ξ) = C

(
ξ

|ξ|

)
|ξ|−

d−1
2 cos

(
2π

(
|ξ| − d − 1

8

))
+ O(|ξ|−

d−1
2

−1).

It follows from the asymptotic formula of the Bessel function. In fact

R−d

∫
|ξ|<R

|σ̂(λ+ ξ)|2 dξ ≈ |λ|−(d−1), (2)

uniformly in |λ| > 1 and 1 < R < |λ|
2
, is what used in the proof.

For all previous Kaufman’s type constructions, |µ̂(n)| depends on the
number of prime divisors of n, that has no asymptotic formula.

I do not know how to construct such a nice measure with (2) in [0, 1].
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Li, B.L. 2025+: for each 0 < s ≤ 1, there exist a rapidly increasing
sequence {qi} and an s-dimensional Salem measure µ supported on⋂

i

⋃
1≤p≤q

s/2
i

p=1 or prime

Nq−1
i

(
Z
p

)
∩ [−1

2
,
1

2
]

with positive Fourier coefficients,

associated with a measure ν ≪ µ,
dν
dµ

∈ L∞(µ),

ν(B(x , r) ≲ϵ r
s−ϵ, ∀ r > 0,∀ x ∈ R (that fails on µ),

and for each i and all integers |k | > 2qi , |l | < qi/2,

|ν̂(k + l)| ≤ C µ̂(k) + Cϵ(1 + |k |)−1+ϵ,

where C ,Cϵ > 0 are independent in i , k and l .

Furthermore, µ does not admit Fourier frames. (Not via
∑

|λ|−s)



Li, B.L. 2025+: for each 0 < s ≤ 1, there exist a rapidly increasing
sequence {qi} and an s-dimensional Salem measure µ supported on⋂

i

⋃
1≤p≤q

s/2
i

p=1 or prime

Nq−1
i

(
Z
p

)
∩ [−1

2
,
1

2
]

with positive Fourier coefficients, associated with a measure ν ≪ µ,

dν
dµ

∈ L∞(µ),

ν(B(x , r) ≲ϵ r
s−ϵ, ∀ r > 0,∀ x ∈ R (that fails on µ),

and for each i and all integers |k | > 2qi , |l | < qi/2,

|ν̂(k + l)| ≤ C µ̂(k) + Cϵ(1 + |k |)−1+ϵ,

where C ,Cϵ > 0 are independent in i , k and l .

Furthermore, µ does not admit Fourier frames. (Not via
∑

|λ|−s)



Li, B.L. 2025+: for each 0 < s ≤ 1, there exist a rapidly increasing
sequence {qi} and an s-dimensional Salem measure µ supported on⋂

i

⋃
1≤p≤q

s/2
i

p=1 or prime

Nq−1
i

(
Z
p

)
∩ [−1

2
,
1

2
]

with positive Fourier coefficients, associated with a measure ν ≪ µ,
dν
dµ

∈ L∞(µ),

ν(B(x , r) ≲ϵ r
s−ϵ, ∀ r > 0,∀ x ∈ R (that fails on µ),

and for each i and all integers |k | > 2qi , |l | < qi/2,

|ν̂(k + l)| ≤ C µ̂(k) + Cϵ(1 + |k |)−1+ϵ,

where C ,Cϵ > 0 are independent in i , k and l .

Furthermore, µ does not admit Fourier frames. (Not via
∑

|λ|−s)



Li, B.L. 2025+: for each 0 < s ≤ 1, there exist a rapidly increasing
sequence {qi} and an s-dimensional Salem measure µ supported on⋂

i

⋃
1≤p≤q

s/2
i

p=1 or prime

Nq−1
i

(
Z
p

)
∩ [−1

2
,
1

2
]

with positive Fourier coefficients, associated with a measure ν ≪ µ,
dν
dµ

∈ L∞(µ),

ν(B(x , r) ≲ϵ r
s−ϵ, ∀ r > 0,∀ x ∈ R (that fails on µ),

and for each i and all integers |k | > 2qi , |l | < qi/2,

|ν̂(k + l)| ≤ C µ̂(k) + Cϵ(1 + |k |)−1+ϵ,

where C ,Cϵ > 0 are independent in i , k and l .

Furthermore, µ does not admit Fourier frames. (Not via
∑

|λ|−s)



Li, B.L. 2025+: for each 0 < s ≤ 1, there exist a rapidly increasing
sequence {qi} and an s-dimensional Salem measure µ supported on⋂

i

⋃
1≤p≤q

s/2
i

p=1 or prime

Nq−1
i

(
Z
p

)
∩ [−1

2
,
1

2
]

with positive Fourier coefficients, associated with a measure ν ≪ µ,
dν
dµ

∈ L∞(µ),

ν(B(x , r) ≲ϵ r
s−ϵ, ∀ r > 0,∀ x ∈ R (that fails on µ),

and for each i and all integers |k | > 2qi , |l | < qi/2,

|ν̂(k + l)| ≤ C µ̂(k) + Cϵ(1 + |k |)−1+ϵ,

where C ,Cϵ > 0 are independent in i , k and l .

Furthermore, µ does not admit Fourier frames. (Not via
∑
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Construction on Diophantine approximation

All previous Kaufman-type constructions are actually supported on⋂
i

⋃
2≤p≤q

s/2
i

prime

Nq−1
i

(
Z
p

)
∩ [−1

2
,
1

2
],

defined by the infinite product (with Pi a set of primes in [2, q
s/2
i ])

∞∏
i=1

Fi(x) :=
∞∏
i=1

1

#Pi

∑
p∈Pi

∑
v∈Z

p−1qiϕ(qi(x − v

p
)),

where ϕ ∈ C 2(−1, 1) used to be arbitrary (but not enough to us).

For the target measure µ, we take Pµ
i = {1} ∪ {p ≤ q

s/2
i , prime}.

For the auxiliary measure ν, we take Pν
i = { q

s/2
i

log qi
≤ p ≤ q

s/2
i , prime}.



The auxiliary function ϕ

We need an auxiliary function ϕ with the following properties:

1 ϕ ∈ C 2(R);
2 suppϕ ⊂ (−1, 1);

3

∫
ϕ = 1;

4 ϕ ≥ 0;

5 ϕ̂ ≥ 0;

6 ϕ̂(ξ + r) ≈ ϕ̂(ξ) uniformly in ξ ∈ R and r ≤ 1. (ϕ /∈ C∞
0 !)

In fact ϕ̂(ξ) ≈ (1 + |ξ|)−4 is sufficient for 6O and easier to check.

Now, fix ϕ0 ∈ C∞
0 (−1, 1), even, ϕ0, ϕ̂0 ≥ 0, and ϕ0 ≥ 1

2
on [−1

2
, 1
2
].

Such a ϕ0 exists by taking ϕ0 = φ ∗ φ, where φ ∈ C∞
0 (−1

2
, 1
2
) is an

arbitrary nonnegative even function satisfying φ ≥ 1 on [−1
2
, 1
2
].



Two ways to construct a desired ϕ
Explicit construction: let ϕ1(x) = χ[−1/2,1/2], ϕ2(x) = 2x |[−1/2,1/2],

ϕ(x) := A1ϕ0(x) + A2(ϕ1 ∗ ϕ1 + ϕ2 ∗ ϕ−
2 ) ∗ (ϕ1 ∗ ϕ1 + ϕ2 ∗ ϕ−

2 )(4x),

where ϕ−
2 (x) := ϕ2(−x), and A1,A2 > 0 are properly chosen. Then

ϕ̂(ξ) = A1ϕ̂0(ξ)+
A2

4

(
(
sin πξ/4

πξ/4
)2 + (

πξ/4 cos πξ/4− sin πξ/4

(πξ/4)2
)2
)2

,

strictly positive and lim|ξ|→∞(πξ)4ϕ̂(ξ) = 43A2 > 0.

Implicit construction (the Paley-Wiener theorem): take, for example,

F (z) = A1

(
πz/4− sin πz/4

z3

)2

+ A2ϕ̂0(z),

with A1,A2 > 0 properly chosen. Then take the ϕ with ϕ̂ = F .



Higher dimensions
Our nonexistence examples seems to be naturally generalized to
higher dimensions, based on existing Salem measures.

A Salem measure in R2 with orthonormal basis of exponentials:∫
f dσ :=

∫ 1
2

− 1
2

f (x ,
√
1− x2) dx ,

a weighted arc in S1, with |σ̂(ξ)| ≲ |ξ|− 1
2 , and Z×{0} as a spectrum.

One should be more careful when d ≥ 4, especially on whether∫
f dσ :=

∫
U⊂B(0,1)

f (x1, . . . , xd−1,
√
1− |x |2) dx ,

is Salem, e.g. NO for U = [−1
2
, 1
2
]d−1 or U = B(0, r) when d ≥ 4.

Q: any s-dimensional Salem measure in [0, 1] admit Fourier frames?
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Thank you!


